S.K.NEET

The Chart of

Cube and Cube Roots

TYPE - 6

Question 1 :

Find the smallest number by which 1323 must be multiplied so that the product is a perfect cube.

 (i)  216
(ii)  729
(iii) 512

Formulae used :

Distance Formula to find distance between two points (x1,y1) and (x2,y2) is :             D = √[(x2 – x1)2 + (y2 – y1)2 ]

Solution :

Sol. (i) Here x1 = 2, y1 = 3, x2 = 4 and y2 = 1
         ∴ The required distance
         

Classwork Questions

( R S Agarwal )

Q.1. Find the smallest number by which 1323 must be multiplied so that the product is a perfect cube.

 (i)  216
(ii)  729
(iii) 512

Answer

 (i)  216
(ii)  729
(iii) 512

Homework Questions

( R S Agarwal )

Q.1. Find the smallest number by which 1323 must be multiplied so that the product is a perfect cube.

 (i)  216
(ii)  729
(iii) 512

Answer

 (i)  216
(ii)  729
(iii) 512

CBSE Questions

Q.1. Find the smallest number by which 1323 must be multiplied so that the product is a perfect cube.

 (i)  216
(ii)  729
(iii) 512

Answer

 (i)  216
(ii)  729
(iii) 512

NCERT Questions

Q.1. Find the smallest number by which 1323 must be multiplied so that the product is a perfect cube.

 (i)  216
(ii)  729
(iii) 512

Answer

 (i)  216
(ii)  729
(iii) 512

Olympiad Questions

Q.1. Find the smallest number by which 1323 must be multiplied so that the product is a perfect cube.

 (i)  216
(ii)  729
(iii) 512

Answer

 (i)  216
(ii)  729
(iii) 512

MCQ Questions

Q.1. Find the smallest number by which 1323 must be multiplied so that the product is a perfect cube.

 (i)  216
(ii)  729
(iii) 512

Answer

 (i)  216
(ii)  729
(iii) 512

Fill in the blanks

Q.1. Find the smallest number by which 1323 must be multiplied so that the product is a perfect cube.
 (i)  216
(ii)  729
(iii) 512

Answer

 (i)  216
(ii)  729
(iii) 512